
International Journal of Theoretical Physics, Vol. 38, No. 7, 1999

Uq[sl(2)] Quantum Algebra in Quantum Hall Effect

A. Jellal1
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For a two-dimensiona l system of electrons described by a Hamiltonian involving
two- and three-body interactions and an external transverse magnetic field, we
construct the Uq[sl(2)] quantum algebra, where the deformation parameter q is
related to the filling factor n . We show that the Laughlin states form a
representation of this algebra.

The Uq[sl(2)] quantum algebra has its origin in the inverse scattering

method (Fadeev, 1984; Kulish and Sklyanin, 1982) and the first such structure,

i.e., Uq[sl(2)], appeared in studies of the Yang±Baxter equation (Kulish and

Reshetkhin, 1981, 1982, 1983a, b). Subsequent developments have shown

that the Hopf algebra description of quantum algebras is the appropriate one

(Drinfeld, 1986; Mansour, 1998; Reshetkhin et al., 1989). Also an extension

of the theory of quantum algebras to supersymmetric quantum Lie algebra

has been achieved (Chaichain and Kulish, 1990; Kulish, 1989; Kulish and

Reshetkhin, 1989). The representation of this quantum algebra was applied

to formulate the Bethe anzatz for the problem of Bloch electrons in a magnetic

field, i.e., the Azbel±Hofstadter problem (Fadeev and Kashaev, 1993; Weig-

mann and Zabrodin, 1993a, b). Naturally, these symmetry are realized also

in the Maxwell±Chern±Simons (MCS) theory, in the pure Chern±Simons

theory (CS) on the torus, in the Landau problem, and in the quantum Hall

effect (Alimohammadi and Shafei Deh Abad, 1996; Kogan, 1994; Sato,

1994), where the latter emerges in a two-dimensional system of electrons in

the presence of a strong perpendicular uniform magnetic field B (Prange and

Girvin, 1990; Stone, 1992). It is characterized by the existence of a series
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of plateaus where the Hall conductivity is quantized and the longitudinal

conductivity vanishes.

The main objective of this paper is to show how the introduction of the

specified interactions of two-body and three-body types between particles in

the Hamiltonian involving the electrons in an external magnetic field leads

to the realization of Uq[sl(2)]. We find the Laughlin states are a representation

of it.

To start let us consider the following N-body Hamiltonian of electrons

confined in a two-dimensional plane (x, y) in the presence of a uniform

magnetic field B perpendicular to the plane and with specified interactions

between particles in the complex notation ( " 5 c 5 m 5 e 5 1, B 5 2)

(Ghosh and Rao, 1997)

H 5 o
N

i 5 1

( 2 4 - i - Å i 1 zi - i 2 zÅ i - Å i 1 zi zÅ i)

1 4 h o
N

i Þ j 1 1

zij 1 - Å i 2
zi

2 2 2
1

zÅ ij 1 - i 1
zÅ i

2 2 2
1 4 h 2 o

N

i, j Þ i, i Þ k 1 1

zijzÅ ik 2 (1)

where we have taken the vector potential A in a symmetric gauge (Az 5 2 iz,

AzÅ 5 izÅ), zi 5 xi 1 iyi denotes the ith position of the particles, zij 5 zi 2 zj ,

- i 5 - / - zi, and h is an odd integer. In (1), the first term represents the quasi-

canonical momentum p 5 (P 2 A), the second is the two-body interactions,

and the third is the three-body interactions between particles.

Let us now define the annihilation ai and creation a 1
i operators by the

following expressions:

ai 5
1

2 1 2 2 - i 1 zÅ i 2 2 h o
N

j Þ i

1

zij 2 (2)

a 1
i 5

1

2 1 2 2 - Å i 2 zi 2 2 h o
N

j Þ i

1

zÅ ij 2 (3)

where [ - i , zj] 5 [ - Å i , zj] 5 d ij. They satisfy the commutation relations

[ai , a 1
j ] 5 d ij (4)

[ai , aj] 5 [a 1
i , a 1

j ] 5 0 (5)
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The Hamiltonian (1) is given now as a function of the operators ai and a 1
i by

H 5 o
N

i 5 1

(a 1
i ai 1 ai a 1

i ) (6)

It is convenient to introduce the operators bi and b 1
i , which we will use

below, as follows:

bi 5
1

2 1 2 2 - Å i 1 zi 2 2 h o
N

j Þ i

1

zÅ ij 2 (7)

b 1
i 5

1

2 1 2 2 - Å i 2 zÅ i 2 2 h o
N

j Þ i

1

zij 2 (8)

They obey the commutation relations

[bi , b 1
j ] 5 d ij (9)

[bi , bj] 5 [b 1
i , b 1

j ] 5 [ai , bj] 5 [ai , b 1
j ] 5 0 (10)

Now let us investigate the possibility of realizing sine or w ` -symmetry

from the operators bi and b 1
i . To begin, let us present the following operators

for a given pair (n1, n2) (Kogan, 1994):

T i
(n1,n2) 5 en1bi 1 n2b 1

i , n1, n2 P C (11)

It is not difficult to see that the operators T i
(n1,n2) and T j

(m1,m2) satisfy the

relations

T i
(n1,n2) T j

(m1,m2) 5 en1bi 1 n2b 1
i 1 m1bj 1 m2b 1

j e d ij(n1m2 2 n2m1) (12)

One sees that for i 5 j, the above relation becomes

T i
(n1,n2) T i

(m1,m2) 5 T i
(n1 1 m1,n2 1 m2) e(n1m2 2 n2m1) (13)

From (13), it is easy to check the operators T i
(n1,n2) satisfying the commutations

[T i
(n1,n2), T i

(m1,m2)] 5 2i sin
i

2
(n1m2 2 n2m1) T i

(n1 1 m1,n2 1 m2) (14)

Here we require the following condition over (n1m2 2 n2m1) to be pure

imaginary. This is exactly the sine algebra or w ` -symmetry (Fairlie et al.,
1989, 1990; Fairlie and Zachos, 1989), which is the deformation aÁ la Moyal

of the Lie algebra C ` (T 2) of a function on the two-dimensional torus.

Now we can realize the quantum algebra Uq[sl(2)]. First, let us recall

that this quantum algebra is defined by four generators E +, E 2 , k, and k 2 1
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which obey the following commutation relations (Drinfeld, 1986; Sklya-

nin, 1991):

[E +, E 2 ] 5
k2 2 k 2 2

q 2 q 2 1 (15)

kE 6 k 2 1 5 q 6 1 E 6 (16)

where q is the so-called deformation parameter. These generators can be

constructed by combining the operators given by equation (11). Precisely,

let us consider the following construction depending on two arbitrary noncol-
linear pairs (n1, n2), ( 2 n1, n2) and for a fixed i:

E 1
i 5

T i
(n1,n2) 2 T i

( 2 n1,n2)

q 2 q 2 1 (17)

E 2
i 5

T i
( 2 n1, 2 n2) 2 T i

(n1, 2 n2)

q 2 q 2 1 (18)

ki 5 T i
(n1,0), k 2 1

i 5 T i
( 2 n1,0) (19)

Calculating the commutation relations between these generators, we recover

Uq[sl(2)] if the deformation parameter is chosen to be

q 5 en1n2 (20)

At this step we note that one can construct the sine algebra for N electrons.

For this, we define the total symmetry operator by the product of N copies

of one-particle operators such as

T(n1,n2) 5 exp F o
N

i 5 1

(n1bi 1 n2b
1
i ) G (21)

which satisfy the following commutation relations:

[T(n1,n2), T(m1,m2)] 5 2i sin
iN

2
(n1m2 2 n2m1) T(n1 1 m1,n2 1 m2) (22)

In the same way, we can construct Uq[sl(2)] as in (17)±(19)

E + 5
T(n1,n2) 2 T( 2 n1,n2)

q 2 q 2 1 (23)

E 2 5
T( 2 n1, 2 n2) 2 T(n1, 2 n2)

q 2 q 2 1 (24)
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k 5 T(n1,0), k 2 1 5 T( 2 n1,0) (25)

In this situation, the deformation parameter q is defined as

q 5 eNn1n2 (26)

Now let us discuss this result. With the appropriate choice of the complex

numbers n1 and n2, such as

n1 5
2 p
Lx

, n2 5
i p
Ly

(27)

the q-deformation parameter given by equation (26) can be written as

q 5 e2i p n , n 5
N p
LxLy

(28)

where n is defined as the number of electrons N per of degeneracy number

of the Landau level eBLxLu /2 p " c (in our case LxLy /2 p ) (Prange and Girvin,

1990), with Lx and Ly defining the size of the two-dimensional system of

electrons along the x axis and y axis, respectively. Hence, this equation leads

to a possible relation between the q-deformation parameter and the filling

factor n , especially in the case where q is a root of unity, namely

q 5 e2i p /l, l P N* (29)

When l takes only odd values, l [ h , then by comparing equations (28) and

(29) we can derive the series for the filling factor n 5 1/ h ( h odd integer)(FroÈ l-

ich and Zee, 1991; Jellal, 1998).

Now let us turn to the quantum algebra structure on some basis of many-

particle wave functions. For convenience, we will focus on the Laughlin
wave functions (Laughlin, 1983; Prange and Girvin, 1990).

For a given filling factor n 5 1/ h ( h odd integer), the ground-state

wave function is described very accurately by the variational wave functions

proposed by Laughlin (1983)

c h (z1, zÅ1, . . . , zN , zÅN) 5 &
i , j

(zÅ i 2 zÅ j)
h exp 1 2

1

2 o
N

i 5 1

zi , zÅ i 2 (30)

Now we denote the wave functions c h (z1, zÅ1, . . . , zN , zÅN) by c h (zi), i 5 1,
2, . . . , N. With the use of equation (21), we can verify that these operators

and the wave functions given above satisfy

T(n1,n2) c h (zi) 5 e 2 Nn1n2/2 c h (zi 2 2n2) (31)

where c h (zi 2 2n2) 5 c h (z1 2 2n2, zn, . . . , zN 2 2n2, zn). Then we obtain
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the action of the quantum algebra on the wave functions (30) using equations

(31) and (23)±(25),

E 6 c h (zi) 5 F 2
1

2 G q

c h (zi 2 2n2) (32)

k 6 1 c h (zi) 5 c h (zi) (33)

These relations show that the Laughlin wave functions form a representation

of the quantum algebra Uq[sl(2)].
In this paper, we have realized the quantum algebra Uq[sl(2)] of an

explicit model for electrons in an external magnetic field and with specified

interactions between electrons. We have also shown that the Laughlin wave

functions form a representation basis of this quantum algebra whose deforma-

tion parameter is related to the filling factor. In the special case where q is
a root of unity, we have recovered the series n 5 1/ h ( h odd integer)

characterizing the fractional quantum Hall effect.
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